I nostri marchi

Benvenuto nel sito Web di Schneider Electric

Benvenuto nel nostro sito Web.
Immagine di Predictive Motor Failure Prevention in Refinery Using Cloud Based Motor Current Signature Analysis

Predictive Motor Failure Prevention in Refinery Using Cloud Based Motor Current Signature Analysis

For over the last 10 years, vibration analysis paired with artificial intelligence has become a common method for motor failure identification. Motor Current Signature Analysis (MCSA) is a novel, non-invasive method that leverages recently available cloud processing power to deliver very similar predictive results comparable to vibration analysis. For critical motors, MCSA allows for a non-invasive, easy to install, and cost-effective motor monitoring method. In this paper, we will explore two main topics: 1) The MCSA data journey for critical motors where details are being continuously collected and transferred to a cloud-based analytics platform where they are compared on a data lake with other similar motors across the world to improve prediction and failure detection algorithms over time. 2) The detection and analysis of three different motor failure modes using Motor Current Signature Analysis on low voltage motors at a Refinery.

Data: 10 nov 2023 | Tipo: Nota applicativa
Lingue: Inglese | Versione: 1.0
Documenti di Riferimento: IEEE-SE_MCSA_Paper

File

Nome file
Predictive Motor Failure Prevention-Rev-4-24-2023_SE.pdf

Serve aiuto?

Selettore prodotti

Trova rapidamente e facilmente i prodotti e gli accessori adatti alle tue applicazioni.

Ottieni un preventivo

Invia online le tue domande sui nostri prodotti o soluzioni, sarai contattato da un nostro esperto.

Dove acquistare?

Trova facilmente il distributore Schneider Electric più vicino nella tua zona.

 Si apre in una nuova finestra

Supporto Guidato

Trova le risorse di supporto per tutte le tue esigenze, in un'unica posizione.

Your browser is out of date and has known security issues.

It also may not display all features of this website or other websites.

Please upgrade your browser to access all of the features of this website.

Latest version for Google Chrome, Mozilla Firefox or Microsoft Edgeis recommended for optimal functionality.