Product datasheet

enclosed variable speed drive ATV71 Plus-LH - 200 KW - 400V -IP23- low harmonic

ATV71EXC2C20N4H
(!) Discontinued on: 31 Dec 2020
(!) To be end-of-service on: 31 Dec 2028

Main

Range Of Product	Altivar 71 Plus-LH
Product Or Component Type	Variable speed drive
Device Short Name	ATV71
Product Destination	Synchronous motors
	Asynchronous motors
Assembly Style	In floor-standing enclosure compact version
Kit Composition	ATV71HC20N4 standard drive IP00
	A line choke
	Control transformer 230 V AC
	An IP65 remote mounting kit for graphic display terminal
	Terminals/bars for motor connection
	A wired ready-assembled Schneider Spacial SF enclosure
	Power supply 24 V DC
	Clean power filter with integrated EMC filter
A switch and fast-acting fuses	
	Active infeed converter

Complementary

Emc Filter	Integrated
Network Number Of Phases	3 phases
[Us] Rated Supply Voltage	$380 \ldots . .415 \mathrm{~V} \mathrm{+/-10} \mathrm{\%}$
Supply Voltage Limits	$342 \ldots 457 \mathrm{~V}$
Supply Frequency	$50 \ldots . .60 \mathrm{~Hz}+/-5 \%$
Network Frequency Limits	$47.5 \ldots . .63 \mathrm{~Hz}$
Motor Power Kw	$200 \mathrm{~kW}, 3$ phases at $380 \ldots 415 \mathrm{~V}$
Line Current	320 A at 400 V 3 phases / 200 kW
Apparent Power	222 kVA for $400 \mathrm{~V}, 3$ phases 200 kW
Prospective Line Isc	100 kA with external fuses
Continuous Output Current	387 kA with option circuit breaker 2.5 kHz at 400 V 3 phases
Maximum Transient Current	580 A (duration=60 s) at 400 V 3 phases
Speed Drive Output Frequency	$0.1 \ldots 500 \mathrm{~Hz}$
Nominal Switching Frequency	2.5 kHz
Switching Frequency	$2 \ldots . .8 \mathrm{kHz}$ adjustable
$2.5 \ldots 8 \mathrm{kHz}$ with derating factor	

Speed Range	1... 100 in open-loop mode, without speed feedback
Speed Accuracy	+/- 0.01% of nominal speed 0.2 Tn to Tn in closed-loop mode with encoder feedback +/- 10% of nominal slip 0.2 Tn to Tn without speed feedback
Torque Accuracy	+/- 15% in open-loop mode, without speed feedback $+/-5 \%$ in closed-loop mode with encoder feedback
Transient Overtorque	170% of nominal motor torque $+/-10 \%$ for 60 s 220% of nominal motor torque + /- 10% for 2 s
Braking Torque	100 \% continuous 120% for 60 seconds
Asynchronous Motor Control Profile	Voltage/frequency ratio (2 or 5 points) Vector control with/without speed feedback ENA (Energy adaptation) system for unbalanced loads
Synchronous Motor Control Profile	Vector control with sensor, standard Vector control without sensor, standard
Regulation Loop	Adjustable PI regulator
Motor Slip Compensation	Automatic whatever the load Adjustable Not available in voltage/frequency ratio (2 or 5 points) Can be suppressed
Overvoltage Category	Class 3 conforming to EN 50178
Local Signalling	LCD display unit for operation function, status and configuration - mounted in the front door
Output Voltage	<= power supply voltage
Isolation	Between power and control terminals
Type Of Cable	IEC cable at $40^{\circ} \mathrm{C}$, copper $70^{\circ} \mathrm{C} / \mathrm{PVC}$
Electrical Connection	Terminal - $2.5 \mathrm{~mm}^{2} /$ AWG 14 (Al1-/Al1+, Al2, AO1, R1A, R1B, R1C, R2A, R2B, LI1...LI6, PWR) entry from the bottom Terminal M10-2 $300 \mathrm{~mm}^{2}$ (L1/R, L2/S, L3/T) entry from the bottom Terminal M12-4 $\times 240 \mathrm{~mm}^{2}$ (U/T1, V/T2, W/T3) entry from the bottom
Motor Recommanded Cable Cross Section	$2(3 \times 120) \mathrm{mm}^{2}$
Short-Circuit Protection	500 A for fuse 3 gl power supply upstream
Supply	External supply: $24 \mathrm{~V}(19 \ldots 30 \mathrm{~V}) \mathrm{DC},<1 \mathrm{~A}, 30 \mathrm{~W}$ Internal supply for reference potentiometer: $10 \mathrm{~V}(10 \ldots 11 \mathrm{~V}) \mathrm{DC},<10 \mathrm{~mA}$ Internal supply: $24 \mathrm{~V}(21 \ldots 27 \mathrm{~V}) \mathrm{DC}$, $<100 \mathrm{~mA}$
Analogue Input Number	2
Analogue Input Type	Al2 software-configurable voltage: $0 \ldots 10 \mathrm{~V}$ DC, 24 V max, impedance: 30 kOhm , sampling time: $1.5 \ldots 2.5 \mathrm{~ms}$, resolution: 11 bits Al1-/Al1+ bipolar differential voltage: +/- 10 V DC, 24 V max, sampling time: $1.5 \ldots . .2 .5$ ms , resolution: 11 bits + sign Al2 software-configurable current: $0 \ldots . .20 \mathrm{~mA} / 4 \ldots 20 \mathrm{~mA}$, impedance: 250 Ohm, sampling time: $1.5 \ldots 2.5 \mathrm{~ms}$, resolution: 11 bits
Analogue Output Number	1
Analogue Output Type	Software-configurable voltage: (AO1) 0... 10 V DC - 470 Ohm - sampling time: 1.5... 2.5 ms - resolution: 10 bits Software-configurable current: (AO1) $0 \ldots . .20 \mathrm{~mA} / 4 \ldots 20 \mathrm{~mA}-500 \mathrm{Ohm}$ - sampling time: $1.5 \ldots 2.5 \mathrm{~ms}$ - resolution: 10 bits
Discrete Output Number	1
Discrete Output Type	Configurable relay logic: (R1A, R1B, R1C)NO/NC - $6.5 \ldots . .7 .5 \mathrm{~ms}-100000$ cycles
Minimum Switching Current	3 mA at 24 V DC (configurable relay logic)
Maximum Switching Current	5 A at 250 VAC on resistive load $-\cos \mathrm{phi}=1$ for configurable relay logic 5 A at 30 V DC on resistive load $-\mathrm{L} / \mathrm{R}=0 \mathrm{~ms}$ for configurable relay logic 2 A at 250 V AC on inductive load $-\cos \mathrm{phi}=0.4$ for configurable relay logic 2 A at 30 VDC on inductive load $-\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}$ for configurable relay logic
Discrete Input Number	6

Discrete Input Type	```Programmable (LI1...LI4) at 24 V DC <= 30 V level 1 PLC 3.5 kOhm (duration=1.5.. 2.5 ms) Switch-configurable (LI6) at 24 V DC <= 30 V level 1 PLC 1.5 kOhm (duration=1.5... 2.5 ms) Safety input (PWR) at 24 V DC <= 30 V 1.5 kOhm```
Discrete Input Logic	Positive logic (source) (LI1...LI6), $0 . . .5 \mathrm{~V}$ (state 0), $11 . . .30 \mathrm{~V}$ (state 1) Negative logic (sink) (LI1...LI6), 16... 30 V (state 0), $0 . . .10 \mathrm{~V}$ (state 1) Positive logic (source) (PWR), $0 . .2 \mathrm{~V}$ (state 0), 17... 30 V (state 1)
Acceleration And Deceleration Ramps	S, U or customized Linear adjustable separately from 0.01 to 9000 s
Braking To Standstill	By regenerative braking with active front end
Protection Type	Against exceeding limit speed: drive Against input phase loss: drive Line supply overvoltage: drive Line supply undervoltage: drive Overcurrent between output phases and earth: drive Overheating protection: drive Overvoltages on the DC bus: drive Power removal: drive Short-circuit between motor phases: drive Thermal protection: motor Motor phase break: motor
Dielectric Strength	3535 V DC between earth and power terminals 5092 V DC between control and power terminals
Insulation Resistance	$>1 \mathrm{mOhm} 500 \mathrm{~V}$ DC for 1 minute to earth
Frequency Resolution	Analog input: $0.024 / 50 \mathrm{~Hz}$ Display unit: 0.1 Hz
Communication Port Protocol	CANopen Modbus
Connector Type	1 RJ45 (on front face) for Modbus 1 RJ45 (on terminal) for Modbus Male SUB-D 9 on RJ45 for CANopen
Physical Interface	2-wire RS 485 for Modbus
Transmission Frame	RTU for Modbus
Transmission Rate	4800 bps, 9600 bps, 19200 bps, 38.4 Kbps for Modbus on terminal $9600 \mathrm{bps}, 19200$ bps for Modbus on front face $20 \mathrm{kbps}, 50 \mathrm{kbps}, 125 \mathrm{kbps}, 250 \mathrm{kbps}, 500 \mathrm{kbps}, 1 \mathrm{Mbps}$ for CANopen
Data Format	8 bits, 1 stop, even parity for Modbus on front face 8 bits, odd even or no configurable parity for Modbus on terminal
Type Of Polarization	No impedance for Modbus
Number Of Addresses	1... 127 for CANopen 1... 247 for Modbus
Method Of Access	Slave CANopen

Function Available	Safe standstill for power circuit PTC relay for power circuit Pt100 relay for power circuit Insulation monitoring for power circuit Design for IT networks for power circuit External 230 V supply terminals for power circuit Buffer voltage 24 V DC power supply for power circuit Enclosure lighting for power circuit Key switch (local/remote) for power circuit Motor heating for power circuit External motor fan for power circuit Voltmeter for power circuit Door handle for main switch for power circuit Ammeter for power circuit Enclosure heating for power circuit Motor choke for power circuit Cable entry via the top for power circuit Enclosure plinth for power circuit Relay output C/O for control circuit External 24 V DC supply terminals for power circuit Control terminals for control circuit Adaptor for 115 V logic inputs for control circuit Isolated amplifier for control circuit
Option Card	Communication card for CC-Link Communication card for DeviceNet Communication card for EtherNet/IP Communication card for Fipio Communication card for Interbus-S Communication card for Modbus Plus Communication card for Modbus TCP Communication card for Modbus/Uni-Telway Communication card for Profibus DP Communication card for Profibus DP V1 Controller inside programmable card Basic I/O extension card Extended I/O extension card Encoder interface cards
Operating Position	Vertical +/-10 degree
Colour Of Enclosure	Light grey (RAL 7035)
Width	1600 mm
Height	2157 mm
Depth	642 mm
Net Weight	980 kg
Environment	
Ip Degree Of Protection	IP23
Standards	EN 61800-2 EN 61800-5-1 EN 60204-1 EN 61800-3 environments 2 category C3
Product Certifications	GOST C-Tick ATEX
Marking	CE
Noise Level	70 dB
Pollution Degree	2 conforming to EN/IEC 61800-5-1
Vibration Resistance	0.6 gn ($\mathrm{f}=10 \ldots 200 \mathrm{~Hz}$) conforming to EN/IEC 60068-2-6 1.5 mm peak to peak ($\mathrm{f}=3 \ldots . .10 \mathrm{~Hz}$) conforming to EN/IEC 60068-2-6 3M3 conforming to EN/IEC 60721-3-3
Shock Resistance	4 gn for 11 ms conforming to EN/IEC 60068-2-27 3M2 conforming to EN/IEC 60721-3-3
Environmental Characteristic	3 K 3 without condensation conforming to IEC 60721-3-3

Relative Humidity	$0 \ldots . .95 \%$
Ambient Air Temperature For Operation	$0 \ldots . .40^{\circ} \mathrm{C}$ (without derating) $40 \ldots 50^{\circ} \mathrm{C}$ (with current derating of 1.8% per ${ }^{\circ} \mathrm{C}$) Ambient Air Temperature For Storage Volume Of Cooling Air$\quad-25 \ldots . .70^{\circ} \mathrm{C}$
Operating Altitude	$2400 \mathrm{~m} 3 / \mathrm{h}$
	$<=1000 \mathrm{~m}$ without derating
$1000 \ldots 3000 \mathrm{~m}$ with current derating 1% per 100 m	

Contractual warranty
Warranty 18 months

Product datasheet
ATV71EXC2C20N4H

Dimensions Drawings

Dimensions

Connections and Schema

Wiring Diagram

A1 Drive
A2 Enclosure
AIC Active Infeed Converter
M Motor
Q1 Main switch built-in as standard
Q2 Optional circuit breaker
F1 Main fuses
KM1 Line contactor
EMC EMC filter
LFC Line Filter Choke
(1) Control
(2) Relay control
(3) Reference potentiometer
(4) Option motor choke

Product datasheet
ATV71EXC2C20N4H

Performance Curves

Derating Curves

The derating curves for the drive nominal current (In) are dependent on the temperature and switching frequency. For intermediate temperatures, interpolate between 2 curves.

NOTE: The drive will reduce the switching frequency automatically in the event of excessive temperature rise.

X Switching frequency (kHz)

NOTE: The temperatures shown correspond to the temperature of the air entering the enclosure.

