Product data sheet

Specifications
variable speed drive ATV31 -

0.18kW - 240V 3-phase supply IP20

ATV31H018M3XAT
(!) Discontinued on: Dec 31, 2011
(!) End-of-service on: Dec 31, 2015

Main

Range Of Product	Altivar
Product Or Component Type	Variable speed drive
Product Specific Application	Simple machine Wire guiding
Component Name	ATV31
Assembly Style	With heat sink
Variant	With drive order potentiometer
Emc Filter	Without EMC filter
[Us] Rated Supply Voltage	200... 240 V-5... 5 \%
Supply Frequency	$50 \ldots 60 \mathrm{~Hz}-5 . .5$ \%
Network Number Of Phases	3 phases
Motor Power Kw	0.18 kW 4 kHz
Motor Power Hp	0.25 hp 4 kHz
Line Current	$\begin{aligned} & 1.9 \mathrm{~A} \text { at } 240 \mathrm{~V} \\ & 2.1 \mathrm{~A} \text { at } 200 \mathrm{~V} \text {, } \mathrm{sc}=1 \mathrm{kA} \end{aligned}$
Apparent Power	0.7 kVA
Prospective Line Isc	1 kA
Nominal Output Current	1.5 A 4 kHz
Maximum Transient Current	2.3 A for 60 s
Power Dissipation In W	23 W at nominal load
Asynchronous Motor Control Profile	Factory set : constant torque Sensorless flux vector control with PWM type motor control signal
Analogue Input Number	4

Complementary

Product Destination	Asynchronous motors
Supply Voltage Limits	$170 \ldots . .264 \mathrm{~V}$
Network Frequency	$47.5 \ldots 63 \mathrm{~Hz}$
Output Frequency	$0.0005 \ldots 0.5 \mathrm{kHz}$
Nominal Switching Frequency	4 kHz
Switching Frequency	$2 \ldots . .16 \mathrm{kHz}$ adjustable

Speed Range	1... 50
Transient Overtorque	150... 170% of nominal motor torque
Braking Torque	<= 150% during 60 s with braking resistor 100 \% with braking resistor continuously 150% without braking resistor
Regulation Loop	Frequency PI regulator
Motor Slip Compensation	Suppressable Adjustable Automatic whatever the load
Output Voltage	<= power supply voltage
Electrical Connection	Al1, Al2, Al3, AOV, AOC, R1A, R1B, R1C, R2A, R2B, LI1...LI6 terminal $2.5 \mathrm{~mm}^{2}$ AWG 14 L1, L2, L3, U, V, W, PA, PB, PA/+, PC/- terminal $2.5 \mathrm{~mm}^{2}$ AWG 14
Tightening Torque	Al1, Al2, Al3, AOV, AOC, R1A, R1B, R1C, R2A, R2B, LI1...LI6: 0.6 N.m L1, L2, L3, U, V, W, PA, PB, PA/+, PC/-: 0.8 N.m
Insulation	Electrical between power and control
Supply	Internal supply for logic inputs: $19 \ldots 30 \vee 100 \mathrm{~mA}$, protection type: overload and short-circuit protection Internal supply for reference potentiometer (2.2 to 10 kOhm): 10... 10.8 V 10 mA , protection type: overload and short-circuit protection
Analogue Input Type	Al3 configurable current $0 \ldots 20 \mathrm{~mA}$, impedance: 250 Ohm Al1 configurable voltage $0 . . .10 \mathrm{~V}$, input voltage 30 V max, impedance: 30000 Ohm Al2 configurable voltage $+/-10 \mathrm{~V}$, input voltage 30 V max, impedance: 30000 Ohm AIP potentiometer reference 8 ms 10 bits $+/-4.3 \%+/-0.2 \%$
Sampling Duration	LI1...LI6: 4 ms discrete Al1, Al2, Al3: 8 ms analog
Response Time	AOV, AOC 8 ms for analog R1A, R1B, R1C, R2A, R2B 8 ms for discrete
Linearity Error	+/- 0.2 \% for output
Analogue Output Number	2
Analogue Output Type	AOC configurable current: $0 \ldots . .20 \mathrm{~mA}$, impedance: 800 Ohm, resolution: 8 bits AOV configurable voltage: $0 . .10 \mathrm{~V}$, impedance: 470 Ohm, resolution: 8 bits
Discrete Input Logic	$\begin{aligned} & \text { Positive logic (source) (LI1 ...LI6), < } 5 \mathrm{~V} \text { (state } 0),>11 \mathrm{~V} \text { (state } 1) \\ & \text { Logic input not wired (LII ...LI4), < } 13 \mathrm{~V} \text { (state 1) } \\ & \text { Negative logic (source) (LI1...LI6), }>19 \mathrm{~V} \text { (state } 0) \end{aligned}$
Discrete Output Number	2
Discrete Output Type	Configurable relay logic: (R1A, R1B, R1C) 1 NO + 1 NC -100000 cycles Configurable relay logic: (R2A, R2B) NC - 100000 cycles
Minimum Switching Current	R1-R2 10 mA at 5 V DC
Maximum Switching Current	R1-R2: 2 A at 250 VAC inductive load, cos $\mathrm{phi}=0.4$ and $\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}$ $R 1-R 2: 2 A$ at $30 \mathrm{~V} D$ inductive load, cos phi $=0.4$ and $L / R=7 \mathrm{~ms}$ R1-R2: 5 A at $250 \mathrm{~V} A C$ resistive load, $\cos p h i=1$ and $L / R=0 \mathrm{~ms}$ R1-R2: 5 A at $30 \mathrm{~V} D C$ resistive load, $\cos \mathrm{phi}=1$ and $\mathrm{L} / \mathrm{R}=0 \mathrm{~ms}$
Discrete Input Number	6
Discrete Input Type	(LI1...LI6) programmable at $24 \mathrm{~V}, 0 \ldots 100 \mathrm{~mA}$ for PLC, impedance: 3500 Ohm
Acceleration And Deceleration Ramps	S, U or customized Linear adjustable separately from 0.1 to 999.9 s
Braking To Standstill	By DC injection

Protection Type	Input phase breaks: drive Line supply overvoltage and undervoltage safety circuits: drive Line supply phase loss safety function, for three phases supply: drive Motor phase breaks: drive Overcurrent between output phases and earth (on power up only): drive Overheating protection: drive Short-circuit between motor phases: drive Thermal protection: motor
Insulation Resistance	$>=500$ mohm 500 V DC for 1 minute
Display Type	1 LED (red) for drive voltage Four 7-segment display units for CANopen bus status
Time Constant	5 ms for reference change
Frequency Resolution	Display unit: 0.1 Hz Analog input: $0.1 . .100$ Hz
Connector Type	1 RJ45 for CANopen via VW3 CANTAP2 adaptor
Physical Interface	RS485 multidrop serial link for CANopen via VW3 CANTAP2 adaptor RS485 multidrop serial link for Modbus
Transmission Frame	RTU for CANopen via VW3 CANTAP2 adaptor RTU for Modbus
Transmission Rate	$10,20,50,125,250,500$ kbps or 1 Mbps for CANopen via VW3 CANTAP2 adaptor
Number Of Addresses	4800,9600 or 19200 bps for Modbus

Environment

Dielectric Strength	2040 V DC between earth and power terminals 2880 V AC between control and power terminals
Electromagnetic Compatibility	$1.2 / 50 \mu \mathrm{~s}-8 / 20 \mu \mathrm{~s}$ surge immunity test level 3 conforming to IEC 61000-4-5 Electrical fast transient/burst immunity test level 4 conforming to IEC 61000-4-4 Electrostatic discharge immunity test level 3 conforming to IEC 61000-4-2 Radiated radio-frequency electromagnetic field immunity test level 3 conforming to IEC 61000-4-3
Standards	EN 50178
Product Certifications	C-Tick N998 CSA UL
Ip Degree Of Protection	On upper part: IP20 (without cover plate) On connection terminals: IP21 On upper part: IP31 On upper part: IP41
Pollution Degree	2
Protective Treatment	TC
Vibration Resistance	$1 \mathrm{gn}(\mathrm{f}=13 . . .150 \mathrm{~Hz}$) conforming to EN/IEC 60068-2-6 1.5 mm ($\mathrm{f}=3 . . .13 \mathrm{~Hz}$) conforming to EN/IEC 60068-2-6
Shock Resistance	15 gn for 11 ms conforming to EN/IEC 60068-2-27
Relative Humidity	5... 95 \% without condensation conforming to IEC 60068-2-3 $5 . . .95 \%$ without dripping water conforming to IEC 60068-2-3

Ambient Air Temperature For $-25 \ldots 70^{\circ} \mathrm{C}$
Storage

Ambient Air Temperature For Operation	$-10 \ldots 50^{\circ} \mathrm{C}$ without derating (with protective cover on top of the drive)
$-10 \ldots 60^{\circ} \mathrm{C}$ with derating factor (without protective cover on top of the drive)	

Operating Altitude
<= 1000 m without derating
$>=1000 \mathrm{~m}$ with current derating 1% per 100 m
Contractual warranty
Warranty
18 months

