Product data sheet

Specifications

> variable speed drive, Altivar Process
> ATV600, ATV650, $160 \mathrm{~kW}, 400$ to 480 V , floor standing

ATV650C16N4F

Range Of Product	Altivar Process ATV600
Product Or Component Type	Variable speed drive
Product Specific Application	Process and utilities
Device Short Name	ATV650
Variant	With disconnect switch
Product Destination	Asynchronous motors Synchronous motors
Emc Filter	Integrated with 150 m conforming to IEC 61800-3 category C3
Ip Degree Of Protection	IP54 conforming to IEC 60529 IP54 conforming to IEC 61800-5-1
[Us] Rated Supply Voltage	$380 . .440 \mathrm{~V}$
Type Of Cooling	Forced convection
Supply Frequency	$50 \ldots . .60 \mathrm{~Hz}-5 . . .5$ \%
[Us] Rated Supply Voltage	$380 . . .440$ V - 15... 10 \%
Motor Power Kw	160 kW (normal duty) 132 kW (heavy duty)
Line Current	251 A at 400 V (heavy duty) 210 A at 380 V (normal duty) 291 A at 380 V (heavy duty) 244 A at 400 V (normal duty)
Prospective Line Isc	50 kA
Apparent Power	191 kVA at 440 V (normal duty) 160 kVA at 440 V (heavy duty)
Continuous Output Current	302 A at 2.5 kHz for normal duty 250 A at 2.5 kHz for heavy duty
Asynchronous Motor Control Profile	Optimized torque mode Variable torque standard Variable torque standard
Synchronous Motor Control Profile	Synchronous reluctance motor Permanent magnet motor
Speed Drive Output Frequency	$0.1 \ldots . .500 \mathrm{~Hz}$
Nominal Switching Frequency	2.5 kHz
Switching Frequency	2... 8 kHz adjustable $2.5 . . .8 \mathrm{kHz}$ with derating factor
Safety Function	STO (safe torque off) SIL 3
Discrete Input Logic	16 preset speeds

Communication Port Protocol	Modbus TCP Modbus serial Modbus serial
Option Card	Slot A: communication module, PROFINET
	Slot A: communication module, DeviceNet
	Slot A: communication module, Modbus TCP/EtherNet/IP
	Slot A: communication module, CANopen daisy chain RJ45
	Slot A: communication module, CANopen SUB-D 9
	Slot A: communication module, CANopen screw terminals
	Slot A/slot B: digital and analog I/O extension module
	Slot A/slot B: output relay extension module
	Slot A: communication module, Ethernet IP/Modbus TCP/MD-Link
	Communication module, BACnet MS/TP
	Communication module, Ethernet Powerlink
	Slot A: communication module, Profibus DP V1

Complementary

Mounting Mode	Floor-standing
Maximum Transient Current	332 A during 60 s (normal duty) 375 A during 60 s (heavy duty)
Network Number Of Phases	3 phases
Discrete Output Number	0
Discrete Output Type	Relay outputs R1A, R1B, R1C 250 V AC 3000 mA Relay outputs R1A, R1B, R1C 30 V DC 3000 mA Relay outputs R2A, R2C 250 V AC 5000 mA Relay outputs R2A, R2C 30 V DC 5000 mA Relay outputs R3A, R3C 250 V AC 5000 mA Relay outputs R3A, R3C 30 V DC 5000 mA
Output Voltage	<= power supply voltage
Permissible Temporary Current Boost	$1.5 \mathrm{x} \ln$ during 60 s (heavy duty) 1.1 x In during 60 s (normal duty)
Motor Slip Compensation	Not available in permanent magnet motor law Automatic whatever the load Adjustable Adjustable
Acceleration And Deceleration Ramps	Linear adjustable separately from 0.01...9999 s
Physical Interface	Ethernet 2-wire RS 485
Braking To Standstill	By DC injection
Protection Type	Safe torque off: motor Motor phase break: motor Thermal protection: drive Safe torque off: drive Overheating: drive Overcurrent between output phases and earth: drive Overload of output voltage: drive Short-circuit protection: drive Motor phase break: drive Overvoltages on the DC bus: drive Line supply overvoltage: drive Line supply undervoltage: drive Line supply phase loss: drive Overspeed: drive Break on the control circuit: drive Thermal protection: motor
Transmission Rate	10, 100 Mbits 4800 bps, 9600 bps, 19200 bps, 38.4 Kbps
Frequency Resolution	Analog input: $0.012 / 50 \mathrm{~Hz}$ Display unit: 0.1 Hz
ssmission Frame	RTU

Electrical Connection	Line side: M12 bar -2 cables $3 \times 70 \mathrm{~mm}^{2}$ minimum per phase (normal duty) Line side: M12 bar - 1 cables $3 \times 185 \mathrm{~mm}^{2}$ maximum per phase (normal duty) Line side: M12 bar -2 cables $3 \times 120 \mathrm{~mm}^{2}$ maximum per phase (normal duty) Motor: M12 bar - 2 cables $3 \times 185 \mathrm{~mm}^{2}$ maximum per phase (normal duty) Line side: M12 bar -2 cables $3 \times 70 \mathrm{~mm}^{2}$ minimum per phase (heavy duty) Line side: M12 bar - 1 cables $3 \times 185 \mathrm{~mm}^{2}$ maximum per phase (heavy duty) Line side: M12 bar - 2 cables $3 \times 120 \mathrm{~mm}^{2}$ maximum per phase (heavy duty) Motor: M12 bar - 2 cables $3 \times 185 \mathrm{~mm}^{2}$ maximum per phase (heavy duty) Line side: M12 bar - 1 cables $3 \times 185 \mathrm{~mm}^{2}$ minimum per phase (normal duty) Motor: M12 bar - 1 cables $3 \times 150 \mathrm{~mm}^{2}$ minimum per phase (normal duty) Motor: M12 bar - 2 cables $3 \times 70 \mathrm{~mm}^{2}$ minimum per phase (normal duty) Line side: M12 bar - 1 cables $3 \times 185 \mathrm{~mm}^{2}$ minimum per phase (heavy duty) Motor: M12 bar - 1 cables $3 \times 120 \mathrm{~mm}^{2}$ minimum per phase (heavy duty) Motor: M12 bar -2 cables $3 \times 50 \mathrm{~mm}^{2}$ minimum per phase (heavy duty) Control: removable screw terminals 0.5 ... $1.5 \mathrm{~mm}^{2}$
Connector Type	RJ45 (on the remote graphic terminal) for Modbus serial RJ45 (on the remote graphic terminal) for Ethernet/Modbus TCP
Data Format	8 bits, configurable odd, even or no parity
Type Of Polarization	No impedance
Exchange Mode	Half duplex, full duplex, autonegotiation Ethernet/Modbus TCP
Number Of Addresses	1... 247 for Modbus serial
Method Of Access	Slave Modbus TCP
Supply	Internal supply for reference potentiometer (1 to 10 kOhm): $10.5 \mathrm{~V} \mathrm{DC}+/-5 \%,<10$ mA , protection type: overload and short-circuit protection Internal supply for digital inputs and STO: 24 V DC ($21 \ldots 27 \mathrm{~V}$), <200 mA, protection type: overload and short-circuit protection External supply for digital inputs: 24 V DC ($19 \ldots 30 \mathrm{~V}$), $<1.25 \mathrm{~mA}$, protection type: overload and short-circuit protection
Local Signalling	3 LEDs (dual colour) for embedded communication status 4 LEDs (dual colour) for communication module status 1 LED (red) for presence of voltage 3 LEDs for local diagnostic
Width	400 mm
Height	2350 mm
Depth	669 mm
Net Weight	330 kg
Analogue Input Number	3
Analogue Input Type	Al1, Al2, Al3 software-configurable voltage: $0 . . .10 \mathrm{~V}$ DC, impedance: 31.5 kOhm , resolution 12 bits Al1, Al2, Al3 software-configurable current: $0 . . .20 \mathrm{~mA}$, impedance: 250 Ohm, resolution 12 bits AI2 voltage analog input: - $10 \ldots 10 \mathrm{~V}$ DC, impedance: 31.5 kOhm , resolution 12 bits
Discrete Input Number	8
Discrete Input Type	DI7, DI8 programmable as pulse input: $0 \ldots 30 \mathrm{kHz}, 24 \mathrm{~V} \mathrm{DC}(<=30 \mathrm{~V})$
Input Compatibility	DI5, DI6: discrete input level 1 PLC conforming to IEC 65A-68 STOA, STOB: discrete input level 1 PLC conforming to IEC 61131-2 DI1...DI6: discrete input level 1 PLC conforming to IEC 61131-2
Discrete Input Logic	Positive logic (source) (DI1...DI8), < 5 V (state 0), > 11 V (state 1) Negative logic (sink) (DI1...DI8), > 16 V (state 0), < 10 V (state 1)
Analogue Output Number	2
Analogue Output Type	Software-configurable voltage AQ1, AQ2: $0 . . .10 \mathrm{~V}$ DC impedance 470 Ohm, resolution 10 bits Software-configurable current AQ1, AQ2: $0 \ldots 20 \mathrm{~mA}$, resolution 10 bits Software-configurable current DQ-, DQ+: 30 V DC Software-configurable current DQ-, DQ+: 100 mA
Sampling Duration	$\begin{aligned} & 5 \mathrm{~ms}+/-1 \mathrm{~ms} \text { (DI5, DI6) - discrete input } \\ & 5 \mathrm{~ms}+/-0.1 \mathrm{~ms} \text { (AI1, Al2, Al3) - analog input } \\ & 10 \mathrm{~ms}+/-1 \mathrm{~ms} \text { (AO1) - analog output } \\ & 2 \mathrm{~ms}+/-0.5 \mathrm{~ms} \text { (DI1...DI4) - discrete input } \end{aligned}$

Accuracy	+/- $1 \% \mathrm{AO} 1, \mathrm{AO} 2$ for a temperature variation $60^{\circ} \mathrm{C}$ analog output $+/-0.6 \% \mathrm{Al1}, \mathrm{Al2}, \mathrm{Al} 3$ for a temperature variation $60^{\circ} \mathrm{C}$ analog input
Linearity Error	AO1, AO2: +/- 0.2 \% for analog output Al1, Al2, Al3: +/- 0.15% of maximum value for analog input
Relay Output Number	3
Relay Output Type	Configurable relay logic R2: sequence relay NO electrical durability 100000 cycles Configurable relay logic R3: sequence relay NO electrical durability 100000 cycles Configurable relay logic R1: fault relay NO/NC electrical durability 100000 cycles
Refresh Time	Relay output (R1, R2, R3): $5 \mathrm{~ms}(+/-0.5 \mathrm{~ms})$
Minimum Switching Current	Relay output R1, R2, R3: 5 mA at 24 V DC
Maximum Switching Current	Relay output R1, R2, R3 on resistive load, cos phi $=1: 3 \mathrm{~A}$ at 30 VDC Relay output R1, R2, R3 on inductive load, cos phi $=0.4$ and $L / R=7 \mathrm{~ms}: 2 \mathrm{~A}$ at 250 V AC Relay output R1, R2, R3 on inductive load, cos phi $=0.4$ and $\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}$: 2 A at 30 V DC Relay output R1, R2, R3 on resistive load, \cos phi $=1: 3 \mathrm{~A}$ at 250 V AC
Isolation	Between power and control terminals
Maximum Output Frequency	500 kHz
Maximum Input Current	291.0 A
Variable Speed Drive Application Selection	Food and beverage processing other application Mining mineral and metal fan Mining mineral and metal pump Oil and gas fan Water and waste water other application Building - HVAC screw compressor Food and beverage processing pump Food and beverage processing fan Food and beverage processing atomization Oil and gas electro submersible pump (ESP) Oil and gas water injection pump Oil and gas jet fuel pump Oil and gas compressor for refinery Water and waste water centrifuge pump Water and waste water positive displacement pump Water and waste water electro submersible pump (ESP) Water and waste water screw pump Water and waste water lobe compressor Water and waste water screw compressor Water and waste water compressor centrifugal Water and waste water fan Water and waste water conveyor Water and waste water mixer Building - HVAC compressor centrifugal
Motor Power Range Ac-3	110... 220 kW at $480 . . .500 \mathrm{~V} 3$ phases 110... 220 kW at $380 . . .440 \mathrm{~V} 3$ phases
Quantity Per Set	1
Enclosure Mounting	Floor-standing
Environment	
Insulation Resistance	> 1 MOhm 500 V DC for 1 minute to earth
Noise Level	69 dB conforming to 86/188/EEC
Power Dissipation In W	2520 W , switching frequency 2.5 kHz (heavy duty) 3120 W , switching frequency 2.5 kHz (normal duty)
Volume Of Cooling Air	$720 \mathrm{~m} 3 / \mathrm{h}$
Operating Position	Vertical +/-10 degree
Maximum Thdi	<48 \% full load conforming to IEC 61000-3-12

Electromagnetic Compatibility	Radiated radio-frequency electromagnetic field immunity test level 3 conforming to IEC 61000-4-3 Electrical fast transient/burst immunity test level 4 conforming to IEC 61000-4-4 $1.2 / 50 \mu \mathrm{~s}-8 / 20 \mu \mathrm{~s}$ surge immunity test level 3 conforming to IEC 61000-4-5 Conducted radio-frequency immunity test level 3 conforming to IEC 61000-4-6 Electrostatic discharge immunity test level 3 conforming to IEC 61000-4-2
Pollution Degree	2 conforming to IEC 61800-5-1
Vibration Resistance	1 gn ($\mathrm{f}=13 \ldots 200 \mathrm{~Hz}$) conforming to IEC 60068-2-6 1.5 mm peak to peak ($\mathrm{f}=2 \ldots . .13 \mathrm{~Hz}$) conforming to IEC $60068-2-6$
Shock Resistance	15 gn for 11 ms conforming to IEC 60068-2-27
Relative Humidity	$5 . . .95 \%$ without condensation conforming to IEC 60068-2-3
Ambient Air Temperature For Operation	$40 . . .50^{\circ} \mathrm{C}$ (with derating factor) $-15 . .40^{\circ} \mathrm{C}$ (without derating)
Ambient Air Temperature For Storage	$-40 . .70^{\circ} \mathrm{C}$
Operating Altitude	$1000 \ldots 4800 \mathrm{~m}$ with current derating 1% per 100 m <= 1000 m without derating
Product Certifications	ATEX EAC C-Tick
Marking	CE
Standards	IEC 60204-1 IEC 61800-2 IEC 61800-3 IEC 61800-5-1
Overvoltage Category	III
Regulation Loop	Adjustable PID regulator
Noise Level	69 dB
Pollution Degree	3
Packing Units	
Unit Type Of Package 1	PCE
Number Of Units In Package 1	1
Package 1 Height	229 cm
Package 1 Width	111 cm
Package 1 Length	120 cm
Package 1 Weight	370.0 kg

Sustainability

Green Premium ${ }^{\text {TM }}$ label is Schneider Electric's commitment to delivering products with best-inclass environmental performance. Green Premium promises compliance with the latest regulations, transparency on environmental impacts, as well as circular and low- CO_{2} products.
Guide to assessing product sustainability is a white paper that clarifies global eco-label standards and how to interpret environmental declarations.
Learn more about Green Premium >
Guide to assess a product's sustainability >

Take-back

Resource performance

Take-Back Program Available

Well-being performance

(V) Mercury Free
(Rohs Exemption Information Yes

Reach Regulation	REACh Declaration
Eu Rohs Directive	Pro-active compliance (Product out of EU RoHS legal scope)
China Rohs Regulation	China RoHS declaration
Weee	The product must be disposed on European Union markets following specific waste collection and never end up in rubbish bins

Product data sheet

Dimensions Drawings

Dimensions

Right and Front Views

Product data sheet
ATV650C16N4F

Mounting and Clearance
Clearances

Connections and Schema

Floor Standing Drive Circuit Diagram

F1 External pre-fuse or circuit breaker
MS Built-in main switch (only available on IP54 drives)
T01 Control transformer 400 / 230 V AC
MF aR fuses
RFI Built-in RFI filter
LC Line reactor choke
REC Rectifier module
INV Inverter module
FC dv/dt filter (from 355 kW the dv/dt filter choke 150 m is built-in as standard)
CTRL Control panel
M11 Fan in enclosure door

Control Block Wiring Diagram

(1) Safe Torque Off
(2) Analog Output
(3) Digital Input
(4) Reference potentiometer
(5) Analog Input

R1A, R1B, R1C : Fault relay
R2A, R2C : Sequence relay
R3A, R3C : Sequence relay

Sensor Connection

It is possible to connect either 1 or 3 sensors on terminals Al 2 or Al 3 .

Product data sheet

The switch is used to adapt the operation of the logic inputs to the technology of the programmable controller outputs.

- Set the switch to Source (factory setting) if using PLC outputs with PNP transistors.
- Set the switch to Ext if using PLC outputs with NPN transistors.

Switch Set to SRC (Source) Position Using the Output Power Supply for the Digital Inputs

Switch Set to SRC (Source) Position and Use of an External Power Supply for the DIs

Switch Set to SK (Sink) Position Using the Output Power Supply for the Digital Inputs

Switch Set to EXT Position Using an External Power Supply for the DIs

Performance Curves

Derating Curves

Normal Duty

- ாாாாำ $30^{\circ} \mathrm{C}\left(86^{\circ} \mathrm{F}\right)$
$-40^{\circ} \mathrm{C}\left(104{ }^{\circ} \mathrm{F}\right)$

$-50^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right) \mathrm{C}$
In : Nominal Drive Current
SF: Switching Frequency

Heavy Duty

- - - - - $=30^{\circ} \mathrm{C}\left(86^{\circ} \mathrm{F}\right)$
$-40^{\circ} \mathrm{C}\left(104{ }^{\circ} \mathrm{F}\right)$

$-50^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right) \mathrm{C}$
In : Nominal Drive Current
SF: Switching Frequency

