Product data sheet

Specifications
variable speed drive, Altivar Process
ATV600, ATV650, 18.5kW, 400 to
480 V, IP55

ATV650D18N4

Main	
Range Of Product	Altivar Process ATV600
Product Or Component Type	Variable speed drive
Product Specific Application	Process and utilities
Device Short Name	ATV650
Variant	Standard version
Product Destination	Asynchronous motors Synchronous motors
Emc Filter	Integrated with 50 m conforming to IEC 61800-3 category C2 Integrated with 150 m conforming to IEC 61800-3 category C3
Ip Degree Of Protection	IP55 conforming to IEC 60529 IP55 conforming to IEC 61800-5-1
[Us] Rated Supply Voltage	$380 . .480 \mathrm{~V}$
Type Of Cooling	Forced convection
Supply Frequency	$50 \ldots . .60 \mathrm{~Hz}-5 . .5$ \%
[Us] Rated Supply Voltage	380... 480 V - 15... 10 \%
Motor Power Kw	15.0 kW (heavy duty) 18.5 kW (normal duty)
Motor Power Hp	15 hp heavy duty 25 hp normal duty
Line Current	23.3 A at 480 V (normal duty) 20.6 A at 380 V (heavy duty) 18.1 A at 480 V (heavy duty) 33.4 A at 380 V (normal duty)
Prospective Line Isc	50 kA
Apparent Power	15 kVA at 480 V (heavy duty) 24 kVA at 480 V (normal duty)
Continuous Output Current	23.5 A at 4 kHz for heavy duty 39.2 A at 4 kHz for normal duty
Asynchronous Motor Control Profile	Optimized torque mode Variable torque standard Variable torque standard
Synchronous Motor Control Profile	Synchronous reluctance motor Permanent magnet motor
Speed Drive Output Frequency	$0.1 \ldots 500 \mathrm{~Hz}$
Nominal Switching Frequency	4 kHz
Switching Frequency	$4 . . .12 \mathrm{kHz}$ with derating factor 2... 12 kHz adjustable
Safety Function	STO (safe torque off) SIL 3

Discrete Input Logic	16 preset speeds
Communication Port Protocol	Modbus TCP Modbus serial Modbus TCP
Option Card	Slot A: communication module, PROFINET
	Slot A: communication module, DeviceNet
	Slot A: communication module, Modbus TCP/EtherNet/IP
	Slot A: communication module, CANopen daisy chain RJ45
	Slot A: communication module, CANopen SUB-D 9
	SSot A: communication module, CANopen screw terminals
	Slot A/slot B: digital and analog I/O extension module
	Slot A/slot B: output relay extension module
	Slot A: communication module, Ethernet IP/Modbus TCP/MD-Link
	Communication module, BACnet MS/TP
	Communication module, Ethernet Powerlink
	Slot A: communication module, Profibus DP V1

Complementary

Mounting Mode	Wall mount
Maximum Transient Current	35.3 A during 60 s (heavy duty) 43.1 A during 60 s (normal duty)
Network Number Of Phases	3 phases
Discrete Output Number	0
Discrete Output Type	Relay outputs R1A, R1B, R1C 250 V AC 3000 mA Relay outputs R1A, R1B, R1C 30 V DC 3000 mA Relay outputs R2A, R2C 250 V AC 5000 mA Relay outputs R2A, R2C 30 V DC 5000 mA Relay outputs R3A, R3C 250 V AC 5000 mA Relay outputs R3A, R3C 30 V DC 5000 mA
Output Voltage	<= power supply voltage
Permissible Temporary Current Boost	$1.5 \mathrm{x} \ln$ during 60 s (heavy duty) 1.1 x In during 60 s (normal duty)
Motor Slip Compensation	Adjustable Not available in permanent magnet motor law Automatic whatever the load Automatic whatever the load
Acceleration And Deceleration Ramps	Linear adjustable separately from 0.01...9999 s
Physical Interface	Ethernet 2-wire RS 485
Braking To Standstill	By DC injection
Protection Type	Safe torque off: motor Motor phase break: motor Thermal protection: drive Safe torque off: drive Overheating: drive Overcurrent between output phases and earth: drive Overload of output voltage: drive Short-circuit protection: drive Motor phase break: drive Overvoltages on the DC bus: drive Line supply overvoltage: drive Line supply undervoltage: drive Line supply phase loss: drive Overspeed: drive Break on the control circuit: drive Thermal protection: motor
Transmission Rate	10, 100 Mbits 4800 bps, 9600 bps, 19200 bps, 38.4 Kbps
Frequency Resolution	Analog input: $0.012 / 50 \mathrm{~Hz}$ Display unit: 0.1 Hz
Transmission Frame RTU	

Electrical Connection	Line side: screw terminal $10 \ldots 16 \mathrm{~mm}^{2} /$ AWG $8 . .$. AWG 6 Motor: screw terminal $10 \ldots 16 \mathrm{~mm}^{2} /$ AWG $8 . . . A W G 6$ Control: removable screw terminals 0.5 ... $1.5 \mathrm{~mm}^{2} /$ AWG 20...AWG 16
Connector Type	RJ45 (on the remote graphic terminal) for Modbus serial RJ45 (on the remote graphic terminal) for Ethernet/Modbus TCP
Data Format	8 bits, configurable odd, even or no parity
Type Of Polarization	No impedance
Exchange Mode	Half duplex, full duplex, autonegotiation Ethernet/Modbus TCP
Number Of Addresses	1... 247 for Modbus serial
Method Of Access	Slave Modbus TCP
Supply	Internal supply for reference potentiometer (1 to 10 kOhm): 10.5 V DC $+/-5 \%,<10$ mA , protection type: overload and short-circuit protection Internal supply for digital inputs and STO: 24 V DC ($21 \ldots 27$ V), $<200 \mathrm{~mA}$, protection type: overload and short-circuit protection External supply for digital inputs: 24 V DC ($19 \ldots 30 \mathrm{~V}$),$<1.25 \mathrm{~mA}$, protection type: overload and short-circuit protection
Local Signalling	3 LEDs (dual colour) for embedded communication status 4 LEDs (dual colour) for communication module status 1 LED (red) for presence of voltage 3 LEDs for local diagnostic
Width	264 mm
Height	678 mm
Depth	299 mm
Net Weight	20.6 kg
Analogue Input Number	3
Analogue Input Type	Al1, Al2, Al3 software-configurable voltage: $0 . . .10 \mathrm{~V}$ DC, impedance: 31.5 kOhm , resolution 12 bits Al1, Al2, Al3 software-configurable current: $0 . . .20 \mathrm{~mA}$, impedance: 250 Ohm, resolution 12 bits Al2 voltage analog input: - $10 \ldots 10 \mathrm{~V}$ DC, impedance: 31.5 kOhm , resolution 12 bits
Discrete Input Number	8
Discrete Input Type	DI7, DI8 programmable as pulse input: $0 \ldots .30 \mathrm{kHz}, 24 \mathrm{~V}$ DC (<= 30 V)
Input Compatibility	DI5, DI6: discrete input level 1 PLC conforming to IEC 65A-68 STOA, STOB: discrete input level 1 PLC conforming to IEC 61131-2 DI1...DI6: discrete input level 1 PLC conforming to IEC 61131-2
Discrete Input Logic	Positive logic (source) (DI1...DI8), < 5 V (state 0), > 11 V (state 1) Negative logic (sink) (DI1...DI8), > 16 V (state 0), < 10 V (state 1)
Analogue Output Number	2
Analogue Output Type	Software-configurable voltage AQ1, AQ2: $0 . .10 \mathrm{~V}$ DC impedance 470 Ohm, resolution 10 bits Software-configurable current AQ1, AQ2: $0 \ldots 20 \mathrm{~mA}$, resolution 10 bits Software-configurable current DQ-, DQ+: 30 V DC Software-configurable current DQ-, DQ+: 100 mA
Sampling Duration	$\begin{aligned} & 5 \mathrm{~ms}+/-1 \mathrm{~ms}(\text { DI5, DI6) - discrete input } \\ & 5 \mathrm{~ms}+/-0.1 \mathrm{~ms}(\text { AI1, AI2, Al3) - analog input } \\ & 10 \mathrm{~ms}+/-1 \mathrm{~ms} \text { (AO1) - analog output } \\ & 2 \mathrm{~ms}+/-0.5 \mathrm{~ms} \text { (DI1...DI4) - discrete input } \end{aligned}$
Accuracy	+/- 1% AO1, AO2 for a temperature variation $60^{\circ} \mathrm{C}$ analog output $+/-0.6 \% \mathrm{Al1}, \mathrm{Al} 2, \mathrm{Al} 3$ for a temperature variation $60^{\circ} \mathrm{C}$ analog input
Linearity Error	AO1, AO2: +/- 0.2 \% for analog output Al1, Al2, Al3: +/- 0.15% of maximum value for analog input
Relay Output Number	3
Relay Output Type	Configurable relay logic R2: sequence relay NO electrical durability 100000 cycles Configurable relay logic R3: sequence relay NO electrical durability 100000 cycles Configurable relay logic R1: fault relay NO/NC electrical durability 100000 cycles

Refresh Time	Relay output (R1, R2, R3): 5 ms ($+/-0.5 \mathrm{~ms}$)
Minimum Switching Current	Relay output R1, R2, R3: 5 mA at 24 V DC
Maximum Switching Current	Relay output R1, R2, R3 on resistive load, cos phi $=1: 3 \mathrm{~A}$ at $30 \mathrm{~V} D$ Relay output R1, R2, R3 on inductive load, cos phi $=0.4$ and $\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}: 2 \mathrm{~A}$ at 250 V AC Relay output R1, R2, R3 on inductive load, cos phi $=0.4$ and $L / R=7 \mathrm{~ms}: 2 \mathrm{~A}$ at 30 V DC Relay output R1, R2, R3 on resistive load, cos phi $=1: 3 \mathrm{~A}$ at 250 V AC
Isolation	Between power and control terminals
Maximum Output Frequency	500 kHz
Maximum Input Current	33.4 A
Variable Speed Drive Application Selection	Building - HVAC compressor centrifugal
Motor Power Range Ac-3	15... 25 kW at $380 \ldots 440 \mathrm{~V} 3$ phases
Quantity Per Set	1
Enclosure Mounting	Wall mounted

Environment

Insulation Resistance	> 1 MOhm 500 V DC for 1 minute to earth
Noise Level	53.7 dB conforming to $86 / 188 /$ EEC
Operating Position	Vertical +/- 10 degree
Maximum Thdi	<48 \% from 80... 100 \% of load conforming to IEC 61000-3-12
Electromagnetic Compatibility	Radiated radio-frequency electromagnetic field immunity test level 3 conforming to IEC 61000-4-3 Electrical fast transient/burst immunity test level 4 conforming to IEC 61000-4-4 $1.2 / 50 \mu \mathrm{~s}-8 / 20 \mu \mathrm{~s}$ surge immunity test level 3 conforming to IEC 61000-4-5 Conducted radio-frequency immunity test level 3 conforming to IEC 61000-4-6 Electrostatic discharge immunity test level 3 conforming to IEC 61000-4-2
Pollution Degree	2 conforming to IEC 61800-5-1
Vibration Resistance	$1 \mathrm{gn}(\mathrm{f}=13 \ldots 200 \mathrm{~Hz}$) conforming to IEC 60068-2-6 1.5 mm peak to peak ($\mathrm{f}=2 \ldots 13 \mathrm{~Hz}$) conforming to IEC 60068-2-6
Shock Resistance	15 gn for 11 ms conforming to IEC 60068-2-27
Relative Humidity	$5 . . .95 \%$ without condensation conforming to IEC 60068-2-3
Ambient Air Temperature For Operation	$40 \ldots 50^{\circ} \mathrm{C}$ (with derating factor) $-15 . .40^{\circ} \mathrm{C}$ (without derating)
Ambient Air Temperature For Storage	$-40 \ldots .70^{\circ} \mathrm{C}$
Operating Altitude	$1000 . . .4800 \mathrm{~m}$ with current derating 1% per 100 m <= 1000 m without derating
Product Certifications	CSA Bureau Veritas TÜV ATEX INERIS DNV-GL ABS
Marking	CE
Standards	IEC 61800-3 IEC 61800-3 environment 1 category C2 EN/IEC 61800-3 environment 2 category C3 IEC 61800-5-1 IEC 61000-3-12 IEC 60721-3 IEC 61508 IEC 13849-1 UL 508C

Overvoltage Category	III
Regulation Loop	Adjustable PID regulator
Noise Level	53.7 dB
Pollution Degree	3
Packing Units	PCE
Unit Type Of Package 1	1
Number Of Units In Package 1	75.0 cm
Package 1 Height	60.0 cm
Package 1 Width	80.0 cm
Package 1 Length	31.5 kg

Sustainability

Green Premium ${ }^{\text {TM }}$ label is Schneider Electric's commitment to delivering products with best-inclass environmental performance. Green Premium promises compliance with the latest regulations, transparency on environmental impacts, as well as circular and low- CO_{2} products.
Guide to assessing product sustainability is a white paper that clarifies global eco-label standards and how to interpret environmental declarations.
Learn more about Green Premium >
Guide to assess a product's sustainability >

Transparency RoHS/REACh

Resource performance

Upgraded Components Available

Well-being performance
(V) Mercury Free
(V) Rohs Exemption Information

Yes

Certifications \& Standards
Reach Regulation REACh Declaration

Eu Rohs Directive	Pro-active compliance (Product out of EU RoHS legal scope)
China Rohs Regulation	China RoHS declaration
Environmental Disclosure	Product Environmental Profile
Weee	The product must be disposed on European Union markets following specific waste collection and never end up in rubbish bins
Circularity Profile	End of Life Information

California Proposition 65

WARNING: This product can expose you to chemicals including: Lead and lead compounds, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov

Dimensions Drawings

Dimensions

Front and Left Views

Product data sheet
ATV650D18N4

mm

(a) $=299 \mathrm{~mm}$ (11.8 in.)

Mounting and Clearance

Clearances

Product data sheet

ATV650D18N4

Connections and Schema

Three-Phase Power Supply with Upstream Breaking via Line Contactor

Connection diagrams conforming to standards EN 954-1 category 1 and IEC/EN 61508 capacity SIL1, stopping category 0 in accordance with standard IEC/EN 60204-1

(1) Line choke if used
(2) Use relay R1 set to operating state Fault to switch Off the product once an error is detected.

A1: Drive
KM1 : Line Contactor
Q2, Q3 : Circuit breakers
S1, S2 : Pushbuttons
T1 : Transformer for control part

Product data sheet

ATV650D18N4

Three-Phase Power Supply with Downstream Breaking via Contactor

Connection diagrams conforming to standards EN 954-1 category 1 and IEC/EN 61508 capacity SIL1, stopping category 0 in accordance with standard IEC/EN 60204-1

(1) Line choke if used
(2) Use relay R1 set to operating state Fault to switch Off the product once an error is detected.

A1 : Drive
KM1 : Contactor

Control Block Wiring Diagram

(1) Safe Torque Off
(2) Analog Output
(3) Digital Input
(4) Reference potentiometer
(5) Analog Input

R1A, R1B, R1C : Fault relay
R2A, R2C : Sequence relay
R3A, R3C : Sequence relay

Sensor Connection

It is possible to connect either 1 or 3 sensors on terminals AI2 or Al3.

Product data sheet

ATV650D18N4

The switch is used to adapt the operation of the logic inputs to the technology of the programmable controller outputs.

- Set the switch to Source (factory setting) if using PLC outputs with PNP transistors.
- Set the switch to Ext if using PLC outputs with NPN transistors.

Switch Set to SRC (Source) Position Using the Output Power Supply for the Digital Inputs

Switch Set to SRC (Source) Position and Use of an External Power Supply for the DIs

Switch Set to SK (Sink) Position Using the Output Power Supply for the Digital Inputs

Switch Set to EXT Position Using an External Power Supply for the DIs

Performance Curves

Derating Curves

$-40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$
-
$-50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$
In : Nominal Drive Current
SF: Switching Frequency

