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Fundamental  Theory

The Protection Engineer is concerned with limiting the effects 
of disturbances in a power system. These disturbances, if 
allowed to persist, may damage plant and interrupt the supply 
of electric energy. They are described as faults (short and 
open circuits) or power swings, and result from natural hazards 
(for instance lightning), plant failure or human error.

To facilitate rapid removal of a disturbance from a power system, 
the system is divided into ‘protection zones’. Relays monitor 
the system quantities (current, voltage) appearing in these 
zones; if a fault occurs inside a zone, the relays operate to 
isolate the zone from the remainder of the power system.

The operating characteristic of a relay depends on the 
energising quantities fed to it such as current or voltage, or 
various combinations of these two quantities, and on the manner 
in which the relay is designed to respond to this information. 
For example, a directional relay characteristic would be obtained 
by designing the relay to compare the phase angle between 
voltage and current at the relaying point. An impedance-
measuring characteristic, on the other hand, would be obtained 
by designing the relay to divide voltage by current. Many other 
more complex relay characteristics may be obtained by 
supplying various combinations of current and voltage to the 

1. Introduction

relay. Relays may also be designed to respond to other system 
quantities such as frequency, power, etc.

In order to apply protection relays, it is usually necessary to 
know the limiting values of current and voltage, and their relative 
phase displacement at the relay location, for various types of 
short circuit and their position in the system. This normally 
requires some system analysis for faults occurring at various 
points in the system.

The main components that make up a power system are 
generating sources, transmission and distribution networks, 
and loads. Many transmission and distribution circuits radiate 
from key points in the system and these circuits are controlled 
by circuit breakers. For the purpose of analysis, the power 
system is treated as a network of circuit elements contained 
in branches radiating from nodes to form closed loops or 
meshes. The system variables are current and voltage, and in 
steady state analysis, they are regarded as time varying 
quantities at a single and constant frequency. The network 
parameters are impedance and admittance; these are assumed 
to be linear, bilateral (independent of current direction) and 
constant for a constant frequency.  

A vector represents a quantity in both magnitude and direction. 
In Figure A2.1 the vector OP has a magnitude Z  at an angle Ѳ  
with the reference axis OX.
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Figure A2.1:  
Vector OP

It may be resolved into two components at right angles to each 
other, in this case x and y. The magnitude or scalar value of 
vector Z is known as the modulus  Z  , and the angle Ѳ  is the 
argument, and is written as arg Z .

The conventional method of expressing a vector Z  is to write 
simply |Z| ∠  Ѳ.	

This form completely specifies a vector for graphical 
representation or conversion into other forms.

For vectors to be useful, they must be expressed algebraically. 
In Figure A2.1, the vector Z  is the resultant of vectorially adding 
its components x and y; algebraically this vector may be written 
as:

= x + jyZ    ...Equation A2.1

where the operator j indicates that the component y is 
perpendicular to component x. In electrical nomenclature, the 
axis OC is the ‘real’ or ‘in-phase’ axis, and the vertical axis OY 
is called the ‘imaginary’ or ‘quadrature’ axis. The operator j 
rotates a vector anti-clockwise through 90°. If a vector is made 
to rotate anti-clockwise through 180°, then the operator j has 
performed its function twice, and since the vector has reversed 
its sense, then:

2. Vector algebra
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j x j j = -12
 or j x j j = -12

whence   j = -1

The representation of a vector quantity algebraically in terms 
of its rectangular co-ordinates is called a ‘complex quantity’. 
Therefore, x + jy is a complex quantity and is the rectangular 
form of the vector |Z| ∠  Ѳ where:
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sin
  ...Equation A2.2

2. Vector algebra

3. Manipulation of  complex quantities

From Equations A2.1 and A2.2:

ZZ = (cosѲ +  jsinѲ)  ...Equation A2.3

and since cos Ѳ and sin Ѳ  may be expressed in exponential 
form by the identities:

sin Ѳ e -e
2j

jѲ -jѲ
=

cos Ѳ e +e
2

jѲ -jѲ
=

it follows that Z  may also be written as:

ZZ = e jѲ    ...Equation A2.4

Therefore, a vector quantity may also be represented 
trigonometrically and exponentially. 

Figure A2.2:
Addition of vectors

Complex quantities may be represented in any of the four  
co-ordinate systems given below:

a. Polar  |Z| ∠  Ѳ

b. Rectangular x + jy

c. Trigonometric Z (cosѲ +  jsinѲ)

d. Exponential Z e jѲ

The modulus Z  and the argument Ѳ  are together known as 
‘polar co-ordinates’, and x and y are described as ‘cartesian 
co-ordinates’. Conversion between co-ordinate systems is 
easily achieved. As the operator j obeys the ordinary laws of 

Figure 3.2:  Addition of vectors
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algebra, complex quantities in rectangular form can be 
manipulated algebraically, as can be seen by the following:

Z + =1 Z (x + x ) + j(y + y )2 1 2 1 2
...Equation A2.5

Z - =1 Z (x -x ) + j(y -y )2 1 2 1 2        ...Equation A2.6 (see Figure A2.2)

Z =

=

+
1

Z1

Z2

1 1Z2 Z

1Z

2Z

2Z Ѳ 2Ѳ

-
1Ѳ 2Ѳ ...Equation A2.7

3.1   Complex variables

Some complex quantities are variable with, for example, time; 
when manipulating such variables in differential equations it is 
expedient to write the complex quantity in exponential form.

When dealing with such functions it is important to appreciate 
that the quantity contains real and imaginary components. If 
it is required to investigate only one component of the complex 
variable, separation into components must be carried out after 
the mathematical operation has taken place.

Example:

Determine the rate of change of the real component of a vector
Z t  with time. 

(cos      + jsin   )Z t t tZ Z= = e jω t     
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3. Manipulation of  complex quantities

Operators are distinguished by one further feature; they are 
the roots of unity. Using De Moivre’s theorem, the nth root of 
unity is given by solving the expression:

1 2 21/ cos sinn 1/n
m j m+= ( )π π

where m is any integer. Hence:

1 2 2
1/ cos sinn

m
n

j m
n

= +π π

where m has values 1, 2, 3,... (n-1)

From the above expression j is found to be the 4th root and 
a the 3rd root of unity, as they have four and three distinct 
values respectively. Table A2.1 gives some useful functions 
of the a operator.

The real component of the vector is cos      tZ . Differentiating 
Z e jω twith respect to time:

j ZZ = e jω te jω td
dt
Separating into real and imaginary components:

(-  sin  t + j  cos  t)( ) ZZ =e jω td
dt

Thus, the rate of change of the real component of a vector  
Z    t  is:

  sin  t  Z-

3.2   Complex numbers

A complex number may be defined as a constant that represents 
the real and imaginary components of a physical quantity. The 
impedance parameter of an electric circuit is a complex number 
having real and imaginary components, which are described 
as resistance and reactance respectively.

Confusion often arises between vectors and complex numbers. 
A vector, as previously defined, may be a complex number. 
In this context, it is simply a physical quantity of constant 
magnitude acting in a constant direction. A complex number, 
which, being a physical quantity relating stimulus and response 
in a given operation, is known as a ‘complex operator’. In this 
context, it is distinguished from a vector by the fact that it has 
no direction of its own.

Because complex numbers assume a passive role in any 
calculation, the form taken by the variables in the problem 
determines the method of representing them.

3.3   Mathematical operators

Mathematical operators are complex numbers that are used 
to move a vector through a given angle without changing the 
magnitude or character of the vector. An operator is not a 
physical quantity; it is dimensionless.

The symbol j, which has been compounded with quadrature 
components of complex quantities, is an operator that rotates 
a quantity anti-clockwise through 90°. Another useful operator 
is one which moves a vector anti-clockwise through 120°, 
commonly represented by the symbol a.

Table A2.1:
Properties of the a operator

j a a= − 2

3

a j e
j2

4
3

1
2

3
2

= − − =
P

a j e
j= − + =1

2
3

2

2
3
P

1 3 2− =a j a

1 32− =−a j a

a a j− =2 3

1=1+ j0 = e j0

21+ a + a  = 0

j a a= − 2

3

a j e
j2

4
3

1
2

3
2

= − − =
P

a j e
j= − + =1

2
3

2

2
3
P

1 3 2− =a j a

1 32− =−a j a

a a j− =2 3

1=1+ j0 = e j0

21+ a + a  = 0
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4. Circuit quantities and conventions

Circuit analysis may be described as the study of the response 
of a circuit to an imposed condition, for example a short circuit. 
The circuit variables are current and voltage. Conventionally, 
current flow results from the application of a driving voltage, 
but there is complete duality between the variables and either 
may be regarded as the cause of the other.

When a circuit exists, there is an interchange of energy; a 
circuit may be described as being made up of ‘sources’ and 
‘sinks’ for energy. The parts of a circuit are described as 
elements; a ‘source’ may be regarded as an ‘active’ element 
and a ‘sink’ as a ‘passive’ element. Some circuit elements are 
dissipative, that is, they are continuous sinks for energy, for 
example resistance. Other circuit elements may be alternately 
sources and sinks, for example capacitance and inductance. 
The elements of a circuit are connected together to form a 
network having nodes (terminals or junctions) and branches 
(series groups of elements) that form closed loops (meshes).

In steady state a.c. circuit theory, the ability of a circuit to 
accept a current flow resulting from a given driving voltage 
is called the impedance of the circuit. Since current and 
voltage are duals the impedance parameter must also have 
a dual, called admittance.

4.1   Circuit variables

As current and voltage are sinusoidal functions of time, varying 
at a single and constant frequency, they are regarded as 
rotating vectors and can be drawn as plan vectors (that is, 
vectors defined by two co-ordinates) on a vector diagram.

For example, the instantaneous value e, of a voltage varying 
sinusoidally with time is:

e E sin(  t+ )m=  ...Equation A2.8

where:

Em  is the maximum amplitude of the waveform

2 f=  is the angular velocity

   is the argument defining the amplitude of the voltage 
  at a time t = 0

At , the actual value of the voltage is E sinm . So if Em is 
regarded as the modulus of a vector, whose argument is , then  
E sinm  is the imaginary component of the vector Em .

Figure A2.3 illustrates this quantity as a vector and as a 
sinusoidal function of time.

The current resulting from applying a voltage to a circuit 
depends upon the circuit impedance. If the voltage is a 
sinusoidal function at a given frequency and the impedance 
is constant the current will also vary harmonically at the same 
frequency, so it can be shown on the same vector diagram 
as the voltage vector, and is given by the equation:

sin(  t+ )= mE
i

Z
-

 ...Equation A2.9

where:

+

-

=

=

= tan X
R

2

-1

Z R

LX 1
C

2X

   ...Equation A2.10

From Equations A2.9 and A2.10 it can be seen that the angular 
displacement   between the current and voltage vectors and 
the current magnitude Im ZEm=  is dependent upon the 
impedance Z . In complex form the impedance may be written
Z R+jX= . The ‘real component’, R, is the circuit resistance, 
and the ‘imaginary component’, X, is the circuit reactance. When 
the circuit reactance is inductive (that is, L>1/  C), the current 
‘lags’ the voltage by an angle  , and when it is capacitive (that 
is,1/  C>  L) it ‘leads’ the voltage by an angle   .

When drawing vector diagrams, one vector is chosen as the 
‘reference vector’ and all other vectors are drawn relative to the 
reference vector in terms of magnitude and angle. The circuit 
impedance Z  is a complex operator and is distinguished from a 
vector only by the fact that it has no direction of its own. A further 
convention is that sinusoidally varying quantities are described by 
their ‘effective’ or ‘root mean square’ (r.m.s.) values; these are 
usually written using the relevant symbol without a suffix.

Figure A2.3:  
Representation of a sinusoidal function
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e

t = 0

t

Thus:

I I

E E
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m

=

=


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



2

2

  ...Equation A2.11

The ‘root mean square’ value is that value which has the same 
heating effect as a direct current quantity of that value in the 
same circuit, and this definition applies to non-sinusoidal as 
well as sinusoidal quantities.
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4. Circuit quantities and conventions

Voltage drops are also positive when acting in the direction  
of current flow. From Figure A2.4(a) it can be seen that 
(Z )Z+ +1 2 Z I3   is the total voltage drop in the loop in the direction 
of current flow, and must equate to the total voltage rise E E-1 2.

In Figure A2.4(b), the voltage drop between nodes a and b   
designatedVab indicates that point b is at a lower potential than 
a, and is positive when current flows from a to b. Conversely  
Vba is a negative voltage drop.

Symbolically: 

ab an bn

ba bn an

V V V

V V V

= −

= −







	 ...Equation A2.14

where n is a common reference point.

4.3   Power

The product of the potential difference across and the current 
through a branch of a circuit is a measure of the rate at which 
energy is exchanged between that branch and the remainder 
of the circuit. If the potential difference is a positive voltage 
drop, the branch is passive and absorbs energy. Conversely, 
if the potential difference is a positive voltage rise, the branch 
is active and supplies energy.

Figure A2.4:
Methods of representing a circuit

(a) Diagrammatic

(b) Double suffix

I

4.2   Sign conventions

In describing the electrical state of a circuit, it is often necessary 
to refer to the ‘potential difference’ existing between two points 
in the circuit. Since wherever such a potential difference exists, 
current will flow and energy will either be transferred or 
absorbed, it is obviously necessary to define a potential 
difference in more exact terms. For this reason, the terms 
voltage rise and voltage drop are used to define more accurately 
the nature of the potential difference.

Voltage rise is a rise in potential measured in the direction of 
current flow between two points in a circuit. Voltage drop is 
the converse. A circuit element with a voltage rise across it 
acts as a source of energy. A circuit element with a voltage 
drop across it acts as a sink of energy. Voltage sources are 
usually active circuit elements, while sinks are usually passive 
circuit elements. The positive direction of energy flow is from 
sources to sinks.

Kirchhoff’s first law states that the sum of the driving voltages must 
equal the sum of the passive voltages in a closed loop. This is 
illustrated by the fundamental equation of an electric circuit:

iR Ldi
dt C

idt e+ + =∫
1 	 ...Equation A2.12

where the terms on the left hand side of the equation are voltage 
drops across the circuit elements. Expressed in steady state 
terms Equation A2.12 may be written:

∑    ∑E I Z= 	 ...Equation A2.13

and this is known as the equated-voltage equation [Ref  A2.1: 
Power System Analysis].

It is the equation most usually adopted in electrical network 
calculations, since it equates the driving voltages, which are 
known, to the passive voltages, which are functions of the 
currents to be calculated.

In describing circuits and drawing vector diagrams, for formal 
analysis or calculations, it is necessary to adopt a notation which 
defines the positive direction of assumed current flow, and 
establishes the direction in which positive voltage drops and 
voltage rises act. Two methods are available: one, the double 
suffix method, is used for symbolic analysis; the other, the single 
suffix or diagrammatic method, is used for numerical calculations.

In the double suffix method the positive direction of current 
flow is assumed to be from node a to node b and the current 
is designated Iab. With the diagrammatic method, an arrow 
indicates the direction of current flow.

The voltage rises are positive when acting in the direction of 
current flow. It can be seen from Figure A2.4 that E1 and Ean 
are positive voltage rises and E2 and Ebn are negative voltage 
rises. In the diagrammatic method their direction of action is 
simply indicated by an arrow, whereas in the double suffix 
method, Ean and Ebn indicate that there is a potential rise in 
directions na and nb.
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If a polyphase system has balanced voltages, that is, equal in 
magnitude and reaching a maximum at equally displaced time 
intervals, and the phase branch impedances are identical, it 
is called a ‘balanced’ system. It will become ‘unbalanced’ if 
any of the above conditions are not satisfied. Calculations using 
a balanced polyphase system are simplified, as it is only 
necessary to solve for a single phase, the solution for the 
remaining phases being obtained by symmetry.

The power system is normally operated as a three-phase, 
balanced, system. For this reason the phase voltages are equal 
in magnitude and can be represented by three vectors spaced 
120° or 2π/3 radians apart, as shown in Figure A2.5(b).

Since the voltages are symmetrical, they may be expressed 
in terms of one, that is:

E a E

E aE

E Ea a

2
a

c a

b =

=

=

           ...Equation A2.17

where a is the vector operator ej2p/3. Further, if the phase 
branch impedances are identical in a balanced system, it 
follows that the resulting currents are also balanced.

4. Circuit quantities and conventions

The rate at which energy is exchanged is known as power, 
and by convention, the power is positive when energy is being 
absorbed and negative when being supplied. With a.c. circuits 
the power alternates, so, to obtain a rate at which energy is 
supplied or absorbed, it is necessary to take the average power 
over one whole cycle.

If e E sin(  t+ )m= and i l sin(  t+ - )m=  then the power  
equation is:

p P[1-cos2(  t+  )]+Qsin2=ei= (  t+  ) ...Equation A2.15

where:

E I cosP=  and

E I sinQ=
From Equation A2.15 it can be seen that the quantity P varies 
from 0 to 2P and quantity Q varies from -Q to +Q in one cycle, 
and that the waveform is of twice the periodic frequency of the 
current voltage waveform.

The average value of the power exchanged in one cycle is a 
constant, equal to quantity P, and as this quantity is the product 
of the voltage and the component of current which is ‘in phase’ 
with the voltage it is known as the ‘real’ or ‘active’ power.

The average value of quantity Q is zero when taken over a 
cycle, suggesting that energy is stored in one half-cycle and 
returned to the circuit in the remaining half-cycle.

Q is the product of voltage and the quadrature component of 
current, and is known as ‘reactive power’. As P and Q are 
constants which specify the power exchange in a given circuit, 
and are products of the current and voltage vectors, then if S 
is the vector product E I  it follows that with E  as the reference 
vector and  as the angle between E and I .

S P jQ= +    ...Equation A2.16

The quantity S is described as the ‘apparent power’, and is 
the term used in establishing the rating of a circuit. S has units 
of VA.

4.4   Single-phase and polyphase systems

A system is single or polyphase depending upon whether the 
sources feeding it are single or polyphase. A source is single 
or polyphase according to whether there are one or several 
driving voltages associated with it. For example, a three-phase 
source is a source containing three alternating driving voltages 
that are assumed to reach a maximum in phase order, A, B, 
C. Each phase driving voltage is associated with a phase 
branch of the system network as shown in Figure A2.5(a).

Figure A2.5:
Methods of representing a circuit

(a) Three-phase system

BC B'C'
N N'

A'A

Phase branches

Direction 
of rotation

(b) Balanced system of vectors

120°

120°

120°

Ea
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5. Impedance notation

It can be seen by inspection of any power system diagram 
that:

a.	several voltage levels exist in a system

b. it is common practice to refer to plant MVA in terms of 	
	 per unit or percentage values

c.	 transmission line and cable constants are given in ohms/km

Before any system calculations can take place, the system 
parameters must be referred to ‘base quantities’ and 
represented as a unified system of impedances in either 
ohmic, percentage, or per unit values.

The base quantities are power and voltage. Normally, they 
are given in terms of the three-phase power in MVA and the 
line voltage in kV. The base impedance resulting from the 
above base quantities is:

Z Ω
MVA
(kV )

b

2

=
		  ...Equation A2.18

and, provided the system is balanced, the base impedance 
may be calculated using either single-phase or three-phase 
quantities.

The per unit or percentage value of any impedance in the 
system is the ratio of actual to base impedance values.

Hence:

Z p u Z Ω MVA

kV

Z Z p.u

b

b

. .

% .

( ) = ( ) ×
( )

( ) = ( ) ×

2

100

  

            			   ...Equation A2.19

Where: MVA base MVA

base kVkV
b

b

=

=	         

Simple transposition of the above formulae will refer the 
ohmic value of impedance to the per unit or percentage 
values and base quantities. 

Having chosen base quantities of suitable magnitude all 
system impedances may be converted to those base 
quantities by using the equations given below:

Z Z MVA
MVA

Z Z kV
kV

b

b

b

b

b2 b1

b2 b1

2

1

1

2

2

= ×

= ×
		             ...Equation A2.20

where

suffix b1 denotes the value to the original base and b2 
denotes the value to new base.

The choice of impedance notation depends upon the 
complexity of the system, plant impedance notation and the 
nature of the system calculations envisaged.

If the system is relatively simple and contains mainly transmission 
line data, given in ohms, then the ohmic method can be adopted 
with advantage. However, the per unit method of impedance 
notation is the most common for general system studies since:

a.	impedances are the same referred to either side of a 
	 transformer if the ratio of base voltages on the two sides  
	 of a transformer is equal to the transformer turns ratio

b.	confusion caused by the introduction of powers of 100 in  
	 percentage calculations is avoided

c.	by a suitable choice of bases, the magnitudes of the data 
	 and results are kept within a predictable range, and hence 
	 errors in data and computations are easier to spot

Most power system studies are carried out using software in 
per unit quantities. Irrespective of the method of calculation, 
the choice of base voltage, and unifying system impedances 
to this base, should be approached with caution, as shown in 
Figure A2.6.

From Figure A2.6 it can be seen that the base voltages in the 
three circuits are related by the turns ratios of the intervening 
transformers. Care is required as the nominal transformation 
ratios e.g. a 110/33kV (nominal) transformer may have a turns 
ratio of 110/34.5kV. Therefore, the rule for hand calculations 
is: ‘to refer an impedance in ohms from one circuit to another 
multiply the given impedance by the square of the turns ratio 
(open circuit voltage ratio) of the intervening transformer’.

Where power system simulation software is used, the software 
normally has calculation routines built in to adjust transformer 
parameters to take account of differences between the nominal 
primary and secondary voltages and turns ratios. In this case, 
the choice of base voltages may be more conveniently made 
as the nominal voltages of each section of the power system. 
This approach avoids confusion when per unit or percent 
values are used in calculations in translating the final results 
into volts, amps, etc.

Figure A2.6:
Selection of base voltages

11.8kV 11.8/141kV

132kV
Overhead line

132/11kV

Distribution
11kV

Wrong selection of base voltage
11.8kV 132kV 11kV

Right selection

11.8kV 141kV x 11=11.7kV141
132
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5. Impedance notation

For example, in Figure A2.7, generators G1 and G2 have a 
sub-transient reactance of 26% on 66.6MVA rating at 11kV, 
and transformers T1 and T2 a voltage ratio of 11/145kV and an 

Figure A2.7:
Section of a power system

G1

T1

T2

G2

132kV
overhead
lines

impedance of 12.5% on 75MVA. Choosing 100MVA as base 
MVA and 132kV as base voltage, find the percentage 
impedances to new base quantities.

a.   Generator reactances to new bases are:

26 100
66 6

11

132
0 27

2

2
× ×

( )
( )

=
.

. %

b.   Transformer reactances to new bases are:

12 5 100
75

145

132
201

2

2
. . %× ×

( )
( )

=

NOTE: The base voltages of the generator and circuits are 
11kV and 145kV respectively, that is, the turns ratio of the 
transformer. The corresponding per unit values can be found 
by dividing by 100, and the ohmic value can be found by using 
Equation A2.19.

6. Basic circuit laws, theorems and network reduction

Most practical power system problems are solved by using 
steady state analytical methods. The assumptions made are 
that the circuit parameters are linear and bilateral and constant 
for constant frequency circuit variables. In some problems, 
described as initial value problems, it is necessary to study 
the behaviour of a circuit in the transient state. Such problems 
can be solved using operational methods. Again, in other 
problems, which fortunately are few in number, the assumption 
of linear, bilateral circuit parameters is no longer valid. These 
problems are solved using advanced mathematical techniques 
that are beyond the scope of this book.

6.1   Circuit laws

In linear, bilateral circuits, three basic network laws apply, 
regardless of the state of the circuit, at any particular instant 
of time. These laws are the branch, junction and mesh laws, 
due to Ohm and Kirchhoff, and are stated below, using steady 
state a.c. nomenclature.

Branch law

The current I  in a given branch of impedance Z  is proportional 
to the potential difference V  appearing across the branch, that 
is, V=IZ .

Junction law

The algebraic sum of all currents entering any junction (or 
node) in a network is zero, that is:

I =∑ 0

Mesh law

The algebraic sum of all the driving voltages in any closed path 
(or mesh) in a network is equal to the algebraic sum of all the 
passive voltages (products of the impedances and the currents) 
in the components branches, that is:

E ZI=∑∑
Alternatively, the total change in potential around a closed loop 
is zero.

6.2   Circuit theorems

From the above network laws, many theorems have been 
derived for the rationalisation of networks, either to reach a 
quick, simple, solution to a problem or to represent a complicated 
circuit by an equivalent. These theorems are divided into two 
classes: those concerned with the general properties of 
networks and those concerned with network reduction.
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Of the many theorems that exist, the three most important are 
given. These are: the Superposition Theorem, Thévenin’s 
Theorem and Kennelly’s Star/Delta Theorem.

Superposition theorem (general network theorem)

The resultant current that flows in any branch of a network due 
to the simultaneous action of several driving voltages is equal 
to the algebraic sum of the component currents due to each 
driving voltage acting alone with the remainder short-circuited.

Thévenin’s theorem (active network reduction theorem)

Any active network that may be viewed from two terminals can 
be replaced by a single driving voltage acting in series with a 
single impedance. The driving voltage is the open-circuit voltage 
between the two terminals and the impedance is the impedance 
of the network viewed from the terminals with all sources short-
circuited.

Kennelly’s star/delta theorem (passive network reduction 
theorem)

Any three-terminal network can be replaced by a delta or star 
impedance equivalent without disturbing the external network. 
The formulae relating the replacement of a delta network by 
the equivalent star network is as follows (Figure A2.8):

Zco Z13 Z23 Z12 Z13 Z23= ( )+ + +
and so on.

6. Basic circuit laws, theorems and network reduction

   
    

 

 
 

  
        

c

Oa b

(a) Star network

1 2

3

(b) Delta network

Figure A2.8 :
Star-delta network transformation

6.3   Network reduction

The aim of network reduction is to reduce a system to a simple 
equivalent while retaining the identity of that part of the system 
to be studied.

For example, consider the system shown in Figure A2.9. The 
network has two sources E' and E", a line AOB shunted by 
an impedance, which may be regarded as the reduction of a 
further network connected between A and B, and a load 
connected between O and N. The object of the reduction is to 
study the effect of opening a breaker at A or B during normal 
system operations, or of a fault at A or B. Thus the identity of 
nodes A and B must be retained together with the sources, 
but the branch ON can be eliminated, simplifying the study. 
Proceeding, A, B, N, forms a star branch and can therefore 
be converted to an equivalent delta.

ZAN ZAO ZNO

Ω

ZAO ZNO

ZBO

ZBN ZBO ZNO

Ω

ZBO ZNO

ZAO

ZAB Z >>>NO ZAOZBOZAO ZBO ΩZAO ZBO

ZNO

0.75 x 18.85
0.45

= =0.75+18.85+

=51

+ +

0.45 x 18.85
0.75

= =0.45+18.85+

=30.6

+ +

= =1.2 (since )+ +

The network is now reduced as shown in Figure A2.10.

By applying Thévenin’s theorem to the active loops, these can 
be replaced by a single driving voltage in series with an 
impedance as shown in Figure A2.11.

E' E''

N

0
A B

1.6Ω

0.75Ω 0.45 Ω 

18.85Ω

2.55 Ω

0.4Ω

Figure A2.9:
Typical power system network

The impedance of a delta network corresponding to and 
replacing any star network is:

Z12 Zao Zbo
Zao Zbo

Zco

= + +

and so on.
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With the widespread availability of computer-based power 
system simulation software, it is now usual to use such software 
on a routine basis for network calculations without significant 
network reduction taking place. However, the network reduction 
techniques given above are still valid, as there will be occasions 
where such software is not immediately available and a hand 
calculation must be carried out.

In certain circuits, for example parallel lines on the same towers, 
there is mutual coupling between branches. Correct circuit 
reduction must take account of this coupling.

Three cases are of interest. These are:

a.	two branches connected together at their nodes

b. 	two branches connected together at one node only

c.	two branches that remain unconnected

Considering each case in turn:

a.	consider the circuit shown in Figure A2.13(a). The application  
	 of a voltage V between the terminals P and Q gives:

V Ia IbaaZ abZ
V Ia IbabZ bbZ

= +

= +

where Ia and Ib are the currents in branches a and b, 
respectively and I I a I b= + , the total current entering at terminal 
P and leaving at terminal Q.

Solving for I a and I b:

I
Z Z V

Z Z Zb
aa ab

aa bb ab

=
−( )

− 2

from which

I
Z Z V

Z Z Za
bb ab

aa bb ab

=
−( )

− 2

and

I I I
V Z Z Z

Z Z Za b
aa bb ab

aa bb ab

= + =
+ −( )

−

2
2  	

6. Basic circuit laws, theorems and network reduction

The network shown in Figure A2.9 is now reduced to that shown 
in Figure A2.12 with the nodes A and B retaining their identity. 
Further, the load impedance has been completely eliminated.

The network shown in Figure A2.12 may now be used to study 
system disturbances, for example power swings with and 
without  faults.

Most reduction problems follow the same pattern as the example 
above. The rules to apply in practical network reduction are:

a.	decide on the nature of the disturbance or disturbances 	
	 to be studied

b.	decide on the information required, for example the branch 
	 currents in the network for a fault at a particular location

c.	reduce all passive sections of the network not directly 
	 involved with the section under examination

d.	reduce all active meshes to a simple equivalent, that is, to 
	 a simple source in series with a single impedance

E'

A

51Ω 30.6Ω

0.4Ω

2.5Ω

1.2Ω1.6Ω

N

B

E''

E'

A

N
(a) Reduction of left active mesh

N

A

(b) Reduction of right active mesh

E''

N

B B

N

E''
31

30.630.6Ω

Ω
31

0.4 x 30.6

Ω
52.6

1.6 x 51

E'
52.6

5151Ω 

1.6Ω

0.4Ω 

Figure A2.10:
Reduction using star/delta transformation

Figure A2.11:
Reduction of active meshes, Thévenin’s Theorem

N

A B
1.2Ω 

2.5Ω

1.55Ω

0.97E'

0.39Ω

0.99E''

Figure A2.12:
Reduction of typical power system network
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6. Basic circuit laws, theorems and network reduction

A

C

B

(b) Equivalent circuit

B

C

A

(a) Actual circuit

=            -

=            -

=

Figure A2.14:
Reduction of mutually-coupled branches with a common 
terminal

so that the equivalent impedance of the original circuit is:

Z V
I

Z Z Z
Z Z Z

aa bb ab

aa bb ab

= =
−

+ −

2

2
	   ...Equation A2.21

(Figure A2.13(b)), and, if the branch impedances are equal, 
the usual case, then:

Z Z Zaa ab= +( )1
2 	...Equation A2.22 (Figure A2.13(c))

b.	consider the circuit in Figure A2.14(a).

The assumption is made that an equivalent star network can 
replace the network shown. From inspection with one terminal 
isolated in turn and a voltage  impressed across the remaining 
terminals it can be seen that:

Za ZaaZc =+

Zb ZbbZc =+

Za ZaaZb =+ Zbb+ 2Zab+

Solving these equations gives:

	Za Zaa Zab= +

Zb Zbb Zab= +

Za -Zab=
	 ...Equation A2.23 (see Figure A2.14(b))

P Q

P Q
I

I

Figure A2.13:
Reduction of two branches with mutual coupling

c.	consider the four-terminal network given in Figure A2.15(a), 	
	 in which the branches 11’ and 22’ are electrically separate 
	 except for a mutual link. The equations defining the network 
	 are:

Z11I1 Z12 I2

Z21I1 Z22 I2

Y11V1 Y12 V2

Y21V1 Y22 V2

1

2

2

1

V
V

I

I

= +
= +

= +
+=

where Z2112Z =  and Y2112Y = , if the network is assumed to 
be reciprocal. Further, by solving the above equations it can 
be shown that:

Y Z

Y Z

Y Z

Z Z Z

11 22

22 11

12 12

11 22 12
2

=

=

=

=

		  ...Equation A2.24

There are three independent coefficients, namely Z12, Z11, Z22, 
so the original circuit may be replaced by an equivalent mesh 
containing four external terminals, each terminal being 
connected to the other three by branch impedances as shown 
in Figure A2.15(b).
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Equation A2.25, defining the equivalent mesh in Figure A2.15(b), 
and inserting radial branches having impedances equal to 11Z   
and 22Z  in terminals 1 and 2, results in Figure A2.15(d).

6. Basic circuit laws, theorems and network reduction

2'

1'

(d) Equivalent circuit

1

2

(a) Actual circuit

2

1

2'

1'

1

C

(c) Equivalent with all nodes 
        commoned except 1

2'

1'

(b) Equivalent circuit

2

1

Figure A2.15 :
Equivalent circuits for four terminal network with mutual 
coupling

In order to evaluate the branches of the equivalent mesh let 
all points of entry of the actual circuit be commoned except 
node 1 of circuit 1, as shown in Figure A2.15(c). Then all 
impressed voltages except V1 will be zero and:

I1 Y11V1=
I2 Y12V1=

If the same conditions are applied to the equivalent mesh, then:

I1 V1 Z11=
I2 1-V 12Z/ 1-V 12Z/= =

These relations follow from the fact that the branch connecting 
nodes 1 and 1’ carries current I1 and the branches connecting 
nodes 1 and 2’ and 1 and 2 carry current I2. This must be true 
since branches between pairs of commoned nodes can carry 
no current.

By considering each node in turn with the remainder commoned, 
the following relationships are found:

Z11' 1 11Y/=
Z22' 1 22Y/=
Z12' -1 12Y/=
Z12 21'Z1'2' -Z 12'-Z= = =

Hence:

Z11'
Z11 Z22

Z22

12
2

=
-Z

Z22'
Z11 Z22

Z11

12
2

=
-Z

Z12'
Z11 Z22

Z12

12
2

=
-Z

 	 ...Equation A2.25

A similar but equally rigorous equivalent circuit is shown in 
Figure A2.15(d). This circuit [Ref  A2.2: Equivalent Circuits I.] 
follows the fact that the self - impedance of any circuit is 
independent of all other circuits. Therefore, it need not appear 
in any of the mutual branches if it is lumped as a radial branch 
at the terminals. So putting 11Z  and 22Z  equal to zero in 
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