Nos marques

Bienvenue sur le site Web de Schneider Electric

Bienvenue sur notre site Web.
Image de Predictive Motor Failure Prevention in Refinery Using Cloud Based Motor Current Signature Analysis

Predictive Motor Failure Prevention in Refinery Using Cloud Based Motor Current Signature Analysis

For over the last 10 years, vibration analysis paired with artificial intelligence has become a common method for motor failure identification. Motor Current Signature Analysis (MCSA) is a novel, non-invasive method that leverages recently available cloud processing power to deliver very similar predictive results comparable to vibration analysis. For critical motors, MCSA allows for a non-invasive, easy to install, and cost-effective motor monitoring method. In this paper, we will explore two main topics: 1) The MCSA data journey for critical motors where details are being continuously collected and transferred to a cloud-based analytics platform where they are compared on a data lake with other similar motors across the world to improve prediction and failure detection algorithms over time. 2) The detection and analysis of three different motor failure modes using Motor Current Signature Analysis on low voltage motors at a Refinery.

Date : 10 nov. 2023 | Type: Solutions d'application
Langues: Anglais | Version: 1.0
Référence du document: IEEE-SE_MCSA_Paper

Fichiers

Nom de fichier
Predictive Motor Failure Prevention-Rev-4-24-2023_SE.pdf

Besoin d'aide ?

Sélecteur de produits

Trouvez rapidement et facilement les produits et accessoires adaptés à vos applications.

Obtenir un devis

Effectuez une demande de renseignements en ligne et un expert vous contactera.

Où acheter ?

Trouvez facilement le distributeur Schneider Electric le plus proche de chez vous.

Centre d'aide

Trouvez des ressources de support pour tous vos besoins, en un seul endroit.

Your browser is out of date and has known security issues.

It also may not display all features of this website or other websites.

Please upgrade your browser to access all of the features of this website.

Latest version for Google Chrome, Mozilla Firefox or Microsoft Edgeis recommended for optimal functionality.