我們的品牌

Impact-Company-Logo-English Black-01-177x54

歡迎造訪施耐德電機全球網站

歡迎訪問我們的網站
		
我们今天能为您提供什么帮助?
What is the difference between IEEE and IEC standards in terms of kW, kVAR, and PF (power factor)?

Article available in these languages: Czech

Issue
Understanding and interpreting the sign of a power factor (PF) value.

Resolution
A lagging power factor denotes that on the phasor diagram, the current lags (is behind) the voltage, and a leading power factor denotes that the current leads (is ahead) the voltage.

For inductive loads  (e.g. induction motors, coils, lamps), the current lags behind the voltage, thus having a lagging power factor.

For capacitive loads (Synchronous condensers, capacitor banks) , the current leads the voltage, thus having a leading power factor.

The lagging or leading distinction does NOT equate to an positive or negative value. Rather, lagging corresponds to an inductive load, while leading corresponds to a capacitive load.

The negative and positive sign that precedes the power factor value displayed is determined by the standard used, that is either the IEEE or IEC standards.


This can be seen in the diagrams below.
The following diagrams show the correlation between kW, kVAR, PF, and inductive or capacitive loads for both the IEEE and IEC standards.

Reactive Power In.  IEC and IEEE Power Factor Sign Convention

  • According to the IEC convention, (left on the figure above), the Power Factor sign is solely dependent on the direction of Real Power flow, and is independent of the load being Inductive or Capacitive.

The power factor is positive for normal (positive) Real Power flow, that is when Real Power flows into a load, i.e energy is being consumed by the load.
The power factor is negative for reverse (negative) Real Power flow, that is when Real power flows out of the load. i.e energy is being generated by the load (as would be the case for any power generation plant)

  • According to the IEEE convention, (right on the figure above), the Power Factor sign is solely dependent on the nature of the load (that is Capacitive or Inductive). In this case, it is independent on the direction of Real Power flow.

For an Inductive load the Power Factor is negative.
For a Capacitive load, the power factor is positive.

NOTE that load here refers to whatever is being monitored for power and energy usage.

施耐德電機Taiwan

探索更多
系列:
探索更多
系列:

需要協助?

  • 產品選型工具

    快速輕鬆地為您的應用找到合適的產品和附件。

  • 取得報價

    立即線上提交您的銷售需求,專業團隊將主動聯繫您。

  • 購買地點

    輕鬆在您所在地區找到最近的施耐德電機經銷商。

  • 支援中心

    在同一位置找到滿足您所有需求的支援資源。

  • 產品文檔
  • 軟體下載
  • 產品選型工具
  • 產品替代和替換
  • 幫助和聯絡中心
  • 尋找我們的辦公室
  • 取得報價
  • 人才招募
  • 公司簡介
  • 舉報不當行為
  • 無障礙
  • 新聞中心
  • 投資者
  • 專業洞察
  • 台灣施耐德電機學院
  • 綠色影響力落差調查
  • Schneider Go Green 2025
  • 隱私政策
  • Cookie通告
  • 使用條款
  • Change your cookie settings