There are 13 basic heat removal methods to cool IT equipment and to transport unwanted heat to the outdoor environment. This paper describes these fundamental cooling technologies using basic terms and diagrams. 11 of these methods rely on the refrigeration cycle as the primary means of cooling. Pumped refrigerant systems provide isolation between the primary heat removal system and IT equipment. The direct air and indirect air methods rely on the outdoor conditions as the primary means cooling making them more efficient for mild climates. The information in this paper allows IT professionals to be more involved in the specification of precision cooling solutions that better align with IT objectives.
English
prp.document.label.formatpdf
Størrelse2.3 MB
Dato26-09-17
Beskrivelse
There are 13 basic heat removal methods to cool IT equipment and to transport unwanted heat to the outdoor environment. This paper describes these fundamental cooling technologies using basic terms and diagrams. 11 of these methods rely on the refrigeration cycle as the primary means of cooling. Pumped refrigerant systems provide isolation between the primary heat removal system and IT equipment. The direct air and indirect air methods rely on the outdoor conditions as the primary means cooling making them more efficient for mild climates. The information in this paper allows IT professionals to be more involved in the specification of precision cooling solutions that better align with IT objectives.
High-density servers offer a significant performance per watt benefit. However, depending on the deployment, they can present a significant cooling challenge. Vendors are now designing servers that can demand over 40 kW of cooling per rack. With most data centers designed to cool an average of no more than 2 kW per rack, innovative strategies must be used for proper cooling of high-density equipment. This paper provides ten approaches for increasing cooling efficiency, cooling capacity, and power density in existing data centers.
English
prp.document.label.formatpdf
Størrelse891.1 KB
Dato17-08-15
Beskrivelse
High-density servers offer a significant performance per watt benefit. However, depending on the deployment, they can present a significant cooling challenge. Vendors are now designing servers that can demand over 40 kW of cooling per rack. With most data centers designed to cool an average of no more than 2 kW per rack, innovative strategies must be used for proper cooling of high-density equipment. This paper provides ten approaches for increasing cooling efficiency, cooling capacity, and power density in existing data centers.
EcoStruxure™
Med Innovation At Every Level redefinerer vi forsyning og automation for en ny verden af energi.